Powerful Medical Receives €40 Million IPCEI Grant — read the full story

Powerful Medical
11. November 2024
1 min to read

AI-Powered Smartphone Application for Detection of Left Ventricular Systolic Dysfunction using 12-Lead ECG

Overview:

Rapid screening methods for heart failure (leading cause of unplanned hospitalizations and healthcare costs) in patients without symptoms are limited. This study validated PMcardio LVEF AI ECG model in identifying reduced heart function on widely accessible 12-lead ECGs. In a study of over 100-thousand patients, PMcardio demonstrated high performance (AUC 0.963) in detecting patients with reduced heart function offering a fast, non-invasive and scalable screening tool.

Published In: Circulation (AHA Journals) – presented at the American Heart Association (AHA) 2024 Scientific Sessions
Presented Date: November 11, 2024

Background

Though echocardiography is the cornerstone of cardiac function assessment in specialized practice, there is a lack of point-of-care tools for immediate evaluation of left ventricular ejection fraction (LVEF) in current practice facilitating the early identification of patients at risk for heart failure who may benefit from further echocardiographic evaluation.

We sought to develop and validate artificial intelligence (AI) models to identify reduced LVEF from a single 12-lead ECG using a smartphone application.

Methods

We sourced all ECGs and transthoracic echocardiograms (TTEs) recorded between 2011 and 2021. ECGs were paired with TTEs conducted within a 24-hour window and were randomly divided into the model development dataset (50%) and validation dataset (50%). Two AI-ECG models were created: one to detect LVEF ≤40% and another for LVEF <50%, following the AHA definition of heart failure. These models were coupled with smartphone-based ECG digitization technology. Performance metrics included area under the receiver operating characteristic curve (AUC), sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and F1-score.

Results

A total of 1,205,370 ECGs and 291,433 TTEs were collected and paired, resulting in 109,809 ECG-TTE pairs from 56,236 unique patients. The validation dataset consisted of 25,510 distinct TTE-ECG pairs (25,510 patients). Prevalence of LVEF≤40% and LVEF<50% was 5.4% and 7.9% respectively. The LVEF≤40% model demonstrated an AUC of 0.963 (95% CI: 0.959-0.966), sensitivity 0.924 (95% CI: 0.91-0.937), specificity 0.887 (95% CI: 0.883-0.891), and F1-score of 0.474 (95% CI: 0.457-0.490). PPV and NPV were 0.318 (95% CI: 0.304-0.333) and 0.995 (95% CI: 0.994-0.996) respectively. Performance of the LVEF <50% model shows an AUC of 0.952 (95% CI: 0.947-0.956), with a slightly lower sensitivity of 0.899 (95% CI: 0.886-0.912), specificity of 0.875 (95% CI: 0.871-0.879), PPV of 0.382 (95% CI: 0.368-0.395), NPV of 0.99 (95% CI: 0.989-0.992), and F1-score of 0.536 (0.521-0.55).

Conclusion

The smartphone-integrated AI model can reliably detect reduced LVEF from standard 12-lead ECGs. Our findings suggest these single 12 lead-ECG based models could serve as a point-of-care screening tool to identify such patients benefiting from further echocardiographic evaluation and consequent management acceleration.


Authors: Anthony Demolder, MD, MSc, PhD, Robert Herman, MD, PhD, Boris Vavrik, MSc, Michal Martonak, MSc, Vladimir Boza, MSc, PhD, Martin Herman, MSc, Timotej Paluš, MSc, Viera Kresnakova, MSc, PhD, Jakub Bahyl, MSc, Andrej Iring, MSc, Jozef Bartunek, MD, PhD, Marc Vanderheyden, MD, Ward Heggermont, PhD, MSc, MD, and Martin Penicka, MD, PhD

Author-Logo_PM
Powerful Medical leads one of the most important shifts in modern medicine by augmenting human-made clinical decisions with artificial intelligence. Our primary focus is on cardiovascular diseases, the world’s leading cause of death.

About PMcardio

PMcardio is a CE-certified AI that reads ECGs and offers a complex assessment of 49 cardiac conditions. Clinically validated in 15+ studies and trusted by over 100,000 clinicians, it delivers rapid, expert‑level interpretations, empowering emergency physicians, GPs, nurses, paramedics, and cardiologists to act with confidence at the point of care. Available for Individuals and Organizations.

About Powerful Medical

Established in 2017, Powerful Medical has embarked on a mission to revolutionize the diagnosis and treatment of cardiovascular diseases. We are a medical company backed by 28 world-class cardiologists and led by our expert Scientific Board with decades of experience in daily patient care, clinical research, and medical devices. The results of our research are implemented, developed, certified, and brought to market by our 50+ strong interdisciplinary team of physicians, data scientists, AI experts, software engineers, regulatory specialists, and commercial teams.

Share this article

Relevant Publications

Artificial intelligence-enhanced ECG detection of acute coronary occlusion in chest pain patients with ST-elevation in lead aVR – A direct comparison to conventional ECG criteria

In a single‑centre retrospective study of 145 consecutive emergency‑department patients whose first ECG showed ≥1 mm ST‑elevation in lead aVR, investigators compared conventional electrocardiographic rules with a deep‑learning classifier (PMcardio “Queen of Hearts”) for recognising an acute coronary occlusion (ACO). Angiography and biomarker adjudication proved ACO in 19 patients (13 %). At an optimised probability threshold, the AI system achieved an area‑under‑the‑ROC curve of 0.918, detected 63 % of occlusions, and—crucially—generated no false‑positive calls in the 54‑patient rule‑out subgroup. By contrast, classic STEMI millimetre criteria identified only one in four occlusions and would have prompted between four and fourteen unnecessary emergency catheterisations.

AI-enhanced recognition of occlusions in acute coronary syndrome (AERO-ACS): a retrospective study

In a one‑year, single‑centre cohort of 217 cath‑lab patients (72 STEMI, 145 NSTEMI), the AERO‑ACS study tested PMcardio’s AI ECG against traditional ST‑elevation rules for detecting angiographic occlusion‑MI. The algorithm matched STEMI sensitivity (86.5 % vs 83.3 %) while raising specificity to 82.2 % (vs 66.0 %), achieved 100 % sensitivity in STEMI cases, and flagged occlusions linked to a 12‑fold higher in‑hospital mortality risk—suggesting more accurate triage with fewer unnecessary activations.

Join over 100,000 healthcare professionals who are already taking advantage of AI