Powerful Medical
12. September 2024
3 min to read

Artificial Intelligence Driven Prehospital ECG Interpretation for the Reduction of False Positive Emergent Cardiac Catheterization Lab Activations

Overview:

Activating the cardiac catheterization lab too frequently can strain healthcare resources, yet overlooking an acute myocardial infarction carries significant risk. Evaluated in a prehospital setting by Hennepin Emergency Services (USA), the PMcardio STEMI AI ECG Model showed potential to optimize emergency cardiac care and improve resource efficiency by reducing false catheterization lab activations by 34% without missing any “true” heart attacks.

Published In: Pre-hospital Emergency Care
Presented Date: September 12, 2024

Objectives

Data suggest patients suffering acute coronary occlusion myocardial infarction (OMI) benefit from prompt primary percutaneous intervention (PPCI). Many emergency medical services (EMS) activate catheterization labs to reduce time to PPCI, but suffer a high burden of inappropriate activations. Artificial intelligence (AI) algorithms show promise to improve electrocardiogram (ECG) interpretation. The primary objective was to evaluate the potential of AI to reduce false positive activations without missing OMI.

Methods

Electrocardiograms were categorized by (1) STEMI criteria, (2) ECG integrated device software and (3) a proprietary AI algorithm (Queen of Hearts (QOH), Powerful Medical). If multiple ECGs were obtained and any one tracing was positive for a given method, that diagnostic method was considered positive. The primary outcome was OMI defined as an angiographic culprit lesion with either TIMI 0–2 flow; or TIMI 3 flow with either peak high sensitivity troponin-I > 5000 ng/L or new wall motion abnormality. The primary analysis was per-patient proportion of false positives.

Results

A total of 140 patients were screened and 117 met criteria. Of these, 48 met the primary outcome criteria of OMI. There were 80 positives by STEMI criteria, 88 by device algorithm, and 77 by AI software. All approaches reduced false positives, 27% for STEMI, 22% for device software, and 34% for AI (p < 0.01 for all). The reduction in false positives did not significantly differ between STEMI criteria and AI software (p = 0.19) but STEMI criteria missed 6 (5%) OMIs, while AI missed none (p = 0.01).

Conclusions

In this single-center retrospective study, an AI-driven algorithm reduced false positive diagnoses of OMI compared to EMS clinician gestalt. Compared to AI (which missed no OMI), STEMI criteria also reduced false positives but missed 6 true OMI. External validation of these findings in prospective cohorts is indicated.



Authors: Peter O. Baker, Shifa R. Karim, Stephen W. Smith, H. Pendell Meyers,Aaron E. Robinson, Ishmam Ibtida, Rehan M. Karim, Gabriel A. Keller, Kristie A. Royce Michael A. Puskarich

Author-Logo_PM
Powerful Medical leads one of the most important shifts in modern medicine by augmenting human-made clinical decisions with artificial intelligence. Our primary focus is on cardiovascular diseases, the world’s leading cause of death.

About PMcardio

PMcardio is the market leader in AI-powered diagnostics, addressing the world’s leading cause of death – cardiovascular diseases. The innovative clinical assistant empowers healthcare professionals to detect up to 40 cardiovascular diseases. In the form of a smartphone application, the certified Class IIb medical device interprets any 12-lead ECG image in under 5 seconds to provide accurate diagnoses and individualized treatment recommendations tailored to each patient.

About Powerful Medical

Established in 2017, Powerful Medical has embarked on a mission to revolutionize the diagnosis and treatment of cardiovascular diseases. We are a medical company backed by 28 world-class cardiologists and led by our expert Scientific Board with decades of experience in daily patient care, clinical research, and medical devices. The results of our research are implemented, developed, certified, and brought to market by our 50+ strong interdisciplinary team of physicians, data scientists, AI experts, software engineers, regulatory specialists, and commercial teams.

Share this article

Relevant Publications

ECG Patterns of Occlusion Myocardial Infarction: a Narrative Review

This comprehensive review highlights the limitations of the traditional STEMI/NSTEMI classification for heart attacks and advocates for a more precise approach to diagnosis and patient triage. Instead of relying solely on standard ECG criteria, this method focuses on ECG patterns that more accurately reflect the severity of underlying coronary vessel disease. By identifying high-risk ECG changes beyond current STEMI guidelines, clinicians can detect heart attacks earlier, initiate treatment faster, and ultimately improve patient outcomes.

Artificial Intelligence–Powered Electrocardiogram Detecting Culprit Vessel Blood Flow Abnormality: AI-ECG TIMI Study Design and Rationale

The AI-ECG TIMI study is a unique, multicenter registry currently enrolling patients to evaluate an AI-powered ECG model for detecting actively obstructed arteries in acute coronary syndrome (ACS). It is the first study to collect standard 12-lead ECGs precisely at the time of coronary angiography, providing novel insights into coronary occlusion and reperfusion. By identifying high-risk ECG patterns and assessing AI’s role in predicting intervention success, it paves the way for AI-driven precision cardiology in acute care.

Join 25,000 healthcare professionals who are already taking advantage of AI