Powerful Medical Receives €40 Million IPCEI Grant — read the full story

Powerful Medical
27. June 2024
3 min to read

Application of the Artificial Intelligence Model for Detection of Electrocardiographic Signs of Coronary Occlusion in Patients with Non ST-Elevation Acute Coronary Syndrome

Overview:

Many heart attacks do not fit the textbook definition and occur without classic ST-elevation seen on ECG, complicating diagnosis. This single-center retrospective evaluation at the National Amosov Institute of Cardiovascular Surgery assessed the PMcardio STEMI AI ECG Model’s ability to detect these subtle cases. The model achieved 85.3% accuracy, 67% sensitivity, and 93% specificity, highlighting its potential to help clinicians identify high-risk patients earlier, enabling timely and targeted care.

Published In: Ukrainian Journal of Cardiovascular Surgery 
Presented Date: June 27, 2024

Aim

This study aimed to determine the effectiveness of the OMI AI deep learning model for the diagnosis of myocardial infarction in patients with non ST-elevation acute coronary syndrome.

Methods

This single-center retrospective observational study analyzed the data of 238 patients admitted to the National Amosov Institute of Cardiovascular Surgery of the National Academy of Medical Sciences of Ukraine with a primary diagnosis of non ST-elevation acute coronary syndrome.

The inclusion criteria for the study were: age ≥18 years, symptoms of acute coronary syndrome, at least one 10-second 12-lead electrocardiography on admission, no changes typical of ST-segment elevation myocardial infarction on electrocardiography, and at least one laboratory blood test for biomarkers of myocardial damage.

Results

The final analysis included data from 116 patients, 69 (59.5%) men and 47 (40.5%) women aged 43 to 88 years (mean age 67±11 years), of whom 34 were older patients (≥75 years). Of these, 29 (25%) patients were discharged with a diagnosis of acute myocardial infarction, 60 (51.7%) with a diagnosis of unstable angina, and 27 (23.3%) patients with other diagnoses.

When analyzing electrocardiographic data by the OMI AI model, true positive results were obtained in 23 cases (19.8%), true negative results in 76 cases (65.5%), false positive results in 11 cases (9.5%), and false negative results in 6 cases (5%).

Accordingly, the model’s sensitivity was 67% and specificity was 93%. The positive and negative predictive values for the model under study were 0.793 and 0.874, respectively. The accuracy of the model was 85.34% (95% CI: 77.78% to 90.64%).

Conclusion

The use of the artificial intelligence tools has the potential to improve the accuracy of diagnosis of myocardial infarction during hospitalization, accelerate the provision of specialized care and improve prognosis in patients with non ST-elevation acute coronary syndrome.


Authors: Sviatoslav A. Kalashnikov, Sergii V. Salo, Andrii V. Stepaniuk, Sabi Sandu, Vasyl V. Lazoryshynets

Author-Logo_PM
Powerful Medical leads one of the most important shifts in modern medicine by augmenting human-made clinical decisions with artificial intelligence. Our primary focus is on cardiovascular diseases, the world’s leading cause of death.

About PMcardio

PMcardio is a CE-certified AI that reads ECGs and offers a complex assessment of 49 cardiac conditions. Clinically validated in 15+ studies and trusted by over 100,000 clinicians, it delivers rapid, expert‑level interpretations, empowering emergency physicians, GPs, nurses, paramedics, and cardiologists to act with confidence at the point of care. Available for Individuals and Organizations.

About Powerful Medical

Established in 2017, Powerful Medical has embarked on a mission to revolutionize the diagnosis and treatment of cardiovascular diseases. We are a medical company backed by 28 world-class cardiologists and led by our expert Scientific Board with decades of experience in daily patient care, clinical research, and medical devices. The results of our research are implemented, developed, certified, and brought to market by our 50+ strong interdisciplinary team of physicians, data scientists, AI experts, software engineers, regulatory specialists, and commercial teams.

Share this article

Relevant Publications

AI-Enabled ECG Analysis Improves Diagnostic Accuracy and Reduces False STEMI Activations: A Multicenter U.S. Registry

In a large, multi-center evaluation presented as Late-Breaking Science at the TCT 2025 conference, investigators assessed the diagnostic accuracy of the Queen of Hearts™ AI algorithm for ST-segment elevation myocardial infarction (STEMI) detection in emergency care. The study compared AI-enhanced ECG interpretation against standard triage protocols across three U.S. PCI centers, encompassing more than 1,000 patients who activated emergent reperfusion pathways. Published in JACC: Cardiovascular Interventions, the results demonstrated significantly improved accuracy and reduced false activations when using AI-driven analysis.

Electrocardiographic Diagnostic Possibilities for Atrial Fibrillation Using Artificial Intelligence: Differentiation from Sinus Rhythm and Other Arrhythmias with the Pmcardio App in Covid-19 Patients

This study evaluated how effectively artificial intelligence can detect atrial fibrillation (AF) in COVID-19 patients using ECG analysis. Researchers compared the PMcardio AI application’s performance with that of cardiologists and infectious disease specialists. Among 116 hospitalized COVID-19 patients, PMcardio achieved perfect diagnostic accuracy (sensitivity and specificity of 1.00) for AF detection, matching cardiologists and surpassing infectious disease specialists. The AI’s performance remained consistent across confidence levels, and its severity assessments correlated significantly with rhythm findings. These results highlight AI’s potential to improve arrhythmia detection, streamline care, and reduce unnecessary in-person evaluations during infectious disease outbreaks.

Join over 100,000 healthcare professionals who are already taking advantage of AI