
Utilizing longitudinal data in assessing all-cause
mortality in patients hospitalized with heart failure

Robert Herman1,2,3* , Marc Vanderheyden4, Boris Vavrik1, Monika Beles4, Timotej Palus1, Olivier Nelis4,
Marc Goethals4, Sofie Verstreken4, Riet Dierckx4, Martin Penicka4, Ward Heggermont4 and Jozef Bartunek4*

1Powerful Medical, Bratislava, Slovak Republic; 2Sigmund Freud University, Vienna, Austria; 3Department of Advanced Biomedical Sciences, University of Naples Frederico II,
Naples, Italy; and 4Cardiovascular Center, OLV Hospital, Aalst, Belgium

Abstract

Aims Risk stratification in patients with a new onset or worsened heart failure (HF) is essential for clinical decision making.
We have utilized a novel approach to enrich patient level prognostication using longitudinally gathered data to develop
ML-based algorithms predicting all-cause 30, 90, 180, 360, and 720 day mortality.
Methods and results In a cohort of 2449 HF patients hospitalized between 1 January 2011 and 31 December 2017, we uti-
lized 422 parameters derived from 151 451 patient exams. They included clinical phenotyping, ECG, laboratory, echocardiog-
raphy, catheterization data or percutaneous and surgical interventions reflecting the standard of care as captured in individual
electronic records. The development of predictive models consisted of 101 iterations of repeated random subsampling splits
into balanced training and validation sets. ML models yielded area under the receiver operating characteristic curve (AUC-
ROC) performance ranging from 0.83 to 0.89 on the outcome-balanced validation set in predicting all-cause mortality at afore-
mentioned time-limits. The 1 year mortality prediction model recorded an AUC of 0.85. We observed stable model perfor-
mance across all HF phenotypes: HFpEF 0.83 AUC, HFmrEF 0.85 AUC, and HFrEF 0.86 AUC, respectively. Model performance
improved when utilizing data from more hospital contacts compared with only data collected at baseline.
Conclusions Our findings present a novel, patient-level, comprehensive ML-based algorithm for predicting all-cause mortal-
ity in new or worsened heart failure. Its robust performance across phenotypes throughout the longitudinal patient follow-up
suggests its potential in point-of-care clinical risk stratification.
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Introduction

Heart failure (HF) is a heterogenous syndrome with a com-
plex pathophysiology and broad range of phenotypes associ-
ated with poor clinical outcomes.1 Several biomarkers and
clinical risk scores have been introduced to aid in prognostic
stratification.2 However, they often fail to provide optimal
patient-level precision.3 They utilize data from a single obser-
vational timepoint and do not capture the entire care pathway
with variations in individual patient management. This reduc-
tionist approach is also dismissive of ongoing adaptations in
patient care with dynamic changes in patient phenotype along
heart failure progression or—in some cases—partial
regression. To yield in-depth predictive insights within these

cycles, it is appealing to utilize a continuum of all captured
electronic health record parameters comprehensively
reflecting the entire patient journey during care delivery. Such
multivariate time-series dataset contains sizeable and neces-
sary granularity for patient-level prognostication, being of
exceptional relevance in the setting of new onset of worsened
HF. However, it is usually aggregated into a static-time dataset
due to multi-dimensionality, heterogeneity and irregularity
making it challenging to preprocess and interpret.

Machine learning (ML), artificial intelligence (AI) and deep
learning4 enable an efficient use of the ‘big data’ from electronic
health records. Various AI-based segmentations, image recon-
structions, and automated detection algorithms5 have been
shown to improve diagnostic workflows. Likewise, the use of
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ML showcased improvement of the empirical risk models in pa-
tient selection for cardiac resynchronization6 or acute myocar-
dial injury.7

We sought to develop a dynamic and comprehensive
ML-based predictive algorithm for all-cause mortality in a co-
hort of patients hospitalized with new onset or worsened
heart failure. Our novel findings are instrumental in showcas-
ing the potential of ML predicting time-dependent mortality
within a point-of-care Powerful Medical (PM) - Aalst HF sys-
tem, reflecting the multidimensional care pathway at individ-
ual patient level.

Methods

Study population

We have selected 2449 patients admitted with the primary
diagnosis of a new onset or worsened heart failure between
years 2011–2017 at the Cardiovascular Center, OLV Hospital
Aalst in Belgium. From each patient a total of 902 clinically
relevant parameters, routinely collected per standards of

care, were included into the analysis and development of
the predictive prognostic models. Besides demographics,
they included vital parameters, laboratory tests, ECG record-
ings, medications, echocardiography parameters, findings
from invasive haemodynamics, coronary or electrophysiol-
ogy exams, surgical and percutaneous cardiac and coronary
interventions. A graphic representation of different types of
input data for the preprocessing stages is shown in Figure 1.
Parameters were gathered during the index hospitalization
and continuously updated throughout the clinical follow-up at
outpatient visits or re-admissions. A time series diagram visual-
izing collection of parameters including prognostic outcomes
of two sample patient’s pathways of care can be observed in
Figure 1. This retrospective study was approved by the local
ethics committee for human research and complied with the
Declaration of Helsinki.

Data pre-processing

Raw anonymized data from 13 tables were merged to create a
large time-series dataset of all ambulatory and in-hospital con-
tacts for each patient. The dataset was aggregated to reflect a

Figure 1 ML methodology in utilizing electronic records over time reflecting longitudinal clinical care. Bottom panel shows an example of two irregular
time series of exams and endpoints for two different patients. Left panel shows the dimensionality of the preprocessed dataset created from different
sources of data gathered in the electronic health records of both patients. In the centre, model training with 101 cross validation splits of training and
validation sets. On the right, recalibrated predictions of the PM-Aalst HF system are shown at three different follow-up patient contacts for both ex-
ample patients. See text for more details.
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daily granularity. Parameters often missing and occurring in
<0.15% of patients were deleted. Missing values between
observations were imputed using the last observation car-
ried forward (LOCF) method.8 Where no prior results were
available, missing values were filled with the parameter’s
median.

The final pre-processing stage included the encoding of all
nominal categorical variables, such as the HF phenotypes,
into binary columns.9 LV and RV functional assessment, as
well as presence or absence of LV hypertrophy were
discretized using categorical values according to the recom-
mendations for cardiac chamber quantification by echocardi-
ography in adults.10 This option was chosen to avoid con-
founding effect of interindividual variations when using
continuous values for these parameters. Furthermore, all
continuous parameters extracted from the ECG recordings,
such as cardiac axis, PR interval, or QRS duration have been
standardized to have a mean of 0 and standard deviation of
1. For other parameters, we have used the original unscaled
values.

Upon pre-processing and deletion of parameters with
high missingness (occurring in <0.15% of patients), the fi-
nal dataset contained 422 clinically relevant input parame-
ters and the primary endpoint, all-cause mortality, repre-
sented by a continuous variable ‘days until death’. For all
patients who remained alive, exams recorded close to the
data collection date occurring within the respective mor-
tality time limit were deleted ensuring that only exams
for which a definite outcome has been established are
used in the analysis. The last pre-processing task was a sig-
moid transformation (Supporting Information, Figure S1)
of the output variable days until death based on the mor-
tality time limit (30, 90, 180, 365, or 730 days) reflected
by the following function:

output transformation daysð Þ ¼ 1

1þ e�
days

time limit � 1ð Þ

All ML models for mortality, were trained to predict the
transformed continuous variable, transformed days until
death resulting from the equation above.

Development of models

In total, the PM-Aalst HF prognosis prediction system consists
of five multivariate linear regression models each predicting
mortality at a different time limit (30 day, 90 day, 180 day,
1 year, and 2 year). For each of these predictive models, the
same methodology has been applied as follows. Model devel-
opment began with a pruning phase, which ranked 422 input
features remaining after the last data pre-processing stage
based on their significance. The dataset was then randomly
split into a balanced train and validation set with a ratio of

3:1 respectively. In the first stage of training, the process
was repeated 10 times and for each iteration, feature impor-
tance coefficients were saved for each input feature. Finally,
each mortality time limit model was trained with features,
which were significant (P-value <0.05) in at least 20% of ran-
dom cross validation runs.

The validation set was balanced by a down sampling of
exams based on the number of exams in the minority class,
upon a 3:1 train (75% patients; 75% exams) and validation
(25% patients; 25% exams) split. The training process
consisted of 101 iterations of repeated random subsampling
splits into training and validation sets, conform to the Monte
Carlo cross-validation approach.11 Exams from the same pa-
tient only appeared in either the training or the validation
set.

Models’ evaluation and statistical analyses

Area under the curve (AUC) was chosen as the main metric
for the evaluation of the performance of all developed
models. For every ML-model we report the median AUC
achieved on the balanced validation set. This median AUC
value out of 101 cross-validation iterations corresponds to
the performance of a specific model. Model performance
was also assessed across different patient segments based
on risk factors, patient characteristics and data collection
time-intervals. HF phenotypes were defined according to
the 2016 ESC Guidelines.12 In addition to the AUC, during
the model cross-validations, feature significance and influ-
ence towards the mortality endpoint was determined for all
predictors remaining after the pruning process. P values
<0.05 were considered statistically significant.

Results

Baseline characteristics

A total of 2449 patients [73.8 ± 12 years, 1479 (60.4%) males]
and 151 451 patient exams retained after the preprocessing
phase have been included into the development of the mor-
tality prediction models. The average patient follow-up
reflecting either time to death or last recorded follow-up
was 2.95 years (2 days to 9.5 years). A total of 857 (35%) pa-
tients died during the follow-up period. Baseline characteris-
tics of balanced training and validation patient sets (3:1 split)
were similar (Table 1). The average rate of missing data
across parameters was 31%, a detailed overview is available
in Supporting Information, Table S3. Baseline characteristics
including distribution of HF phenotypes, risk factors and med-
ication were comparable.
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Table 1 Baseline characteristics at index hospital admission, reflecting a balanced patient population in both training and validation sets

Parameter Category Overall Training set Validation set

Patients, n (%) 2449 1838 (75.0) 611 (25.0)
Exams, n (%) 151 451 116,229 (76.7) 35,222 (23.3)
Age, mean (SD) 73.8 (12.0) 73.6 (12.0) 74.3 (11.9)
Gender, n (%) M 1,479 (60.4) 1,113 (60.6) 366 (59.9)

W 970 (39.6) 725 (39.4) 245 (40.1)
Weight, mean (SD) 77.7 (18.6) 77.7 (18.9) 77.5 (17.8)
BMI, mean (SD) 27.1 (5.5) 27.2 (5.7) 27.1 (5.1)
BSA, mean (SD) 1.9 (0.3) 1.9 (0.3) 1.9 (0.2)
SBP, mean (SD) 128.1 (24.1) 128.1 (24.0) 127.8 (24.2)
DBP, mean (SD) 73.8 (13.8) 73.6 (13.8) 74.4 (13.9)
Heart rate, mean (SD) 77.7 (21.4) 77.0 (20.8) 79.5 (23.1)
HF class, n (%) HFmrEF 443 (18.1) 321 (17.5) 122 (20.0)

HFpEF 842 (34.4) 646 (35.1) 196 (32.1)
HFrEF 918 (37.5) 686 (37.3) 232 (38.0)

MR grade, n (%) 1.0 719 (29.4) 543 (29.5) 176 (28.8)
2.0 353 (14.4) 262 (14.3) 91 (14.9)
3.0 139 (5.7) 100 (5.4) 39 (6.4)

Diseased vessels, n (%) 1.0 475 (19.4) 356 (19.4) 119 (19.5)
2.0 22 (0.9) 13 (0.7) 9 (1.5)
3.0 30 (1.2) 19 (1.0) 11 (1.8)

Ischaemic aetiology, n (%) 1.0 1550 (63.3) 1167 (63.5) 383 (62.7)
Smoking, n (%) Current 294 (12.0) 220 (12.0) 74 (12.1)

None 1116 (45.6) 826 (44.9) 290 (47.5)
Previous 448 (18.3) 345 (18.8) 103 (16.9)
Unknown 591 (24.1) 447 (24.3) 144 (23.6)

Hypertension, n (%) 1.0 1105 (45.1) 833 (45.3) 272 (44.5)
Dyslipidaemia, n (%) 1.0 912 (37.2) 668 (36.3) 244 (39.9)
Diabetes, n (%) 1.0 790 (32.3) 586 (31.9) 204 (33.4)
COPD, n (%) 1.0 757 (30.9) 579 (31.5) 178 (29.1)
Atrial fibrillation, n (%) 1.0 550 (22.5) 405 (22.0) 145 (23.7)
LBBB, n (%) 1.0 225 (9.2) 172 (9.4) 53 (8.7)
Beta-blockers, n (%) 1.0 1929 (78.8) 1454 (79.2) 475 (77.6)
Diuretics, n (%) 1.0 1966 (80.3) 1484 (80.8) 482 (78.8)
Potassium sparing diuretics, n (%) 1.0 1932 (78.9) 1453 (79.1) 479 (78.3)
RAS agents, n (%) 1.0 1508 (61.6) 1124 (61.2) 384 (62.7)

BMI, body mass index; BSA, body surface area; COPD, chronic obstructive pulmonary disease; DBP, diastolic blood pressure; HF, heart fail-
ure; HFpEF, HF with preserved ejection fraction; HFmrEF, HF with mid-range ejection fraction; HFrEF, HF with reduced ejection fraction;
LBBB, left bundle branch block; MR, mitral regurgitation; RAS, renin-angiotensin system; SBP, systolic blood pressure.

Figure 2 Receiver operating characteristic curves (ROC) for individual ML models predicting 30 day, 90 day, 180 day, 1 year, and 2 year all-cause mor-
tality. Left panel: training set. Right panel validation set. AUC, area under curve.
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All-cause mortality prediction

Figure 2 shows receiver operating curves (ROC) for all-cause
mortality at 30 day, 90 day, 180 day, 1 year, and 2 year. Train-
ing and validation models predicting all-cause mortality at
the respective time limits were comparable, no model
overfitting was observed. The validation set performance
ranged from 0.83 to 0.89 as shown in Figure 2B. The 1 year
mortality prediction model, predicting the primary endpoint
has recorded an AUC score of 0.85.

Performance of the primary model was tested across HF
phenotypes and patient segments based on baseline charac-
teristics. As shown in Figure 3, we observed stable model per-

formance across all HF phenotypes: HFpEF 0.83 AUC, HFmrEF
0.85 AUC and HFrEF 0.86 AUC, respectively. The model yielded
comparable predictive power regardless of the risk factors or
disease modifiers including diabetes, hypertension, presence
of secondary mitral regurgitation >2+, renal insufficiency and
atrial fibrillation. Performance was more favourable in younger
patients under 65 years versus older patients over 85 years
with 0.89 AUC and 0.75 AUC, respectively.

We have also tested the performance of the ML model
predicting 1 year mortality at different time points of data
collection after index admission. Shown in Figure 4, model
performance predicting 1 year mortality improved with data
accumulation from patient contacts over time. Predictive

Figure 3 Model performance in predicting one-year all-cause mortality in different patient subsets according to risk factors, comorbidities or heart
failure phenotype. Abbreviations as in Table 1 and Figure 2.
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performance on baseline data, collected within the index
hospitalization, yielded an AUC of 0.76, compared with 0.86
when predicting on all longitudinal data gathered over
follow-up of 2 years after index admission.

As shown in Figure 5, the 1 year mortality prediction ML
model yielded higher performance compared with either
Seattle Heart Failure or MAGGIC risk score in the entire vali-
dation set or as compared with Semmelweis CRT score on the
subset of CRT patients.

Significant features predicting mortality

Upon analysing the final ML models, 40 features were identi-
fied as most significant for all-cause mortality at individual
time limits. The full list of features, including their coefficients
for reproducibility of the models is available in the
Supporting Information, Tables S1 and S2. Figure 6 shows a
heatmap diagram of these features with their weighted influ-
ence on the time-related model represented by the colour
intensity. High recorded values for features coloured in blue
(e.g. high haemoglobin or absence of hypochloraemia) corre-
spond to a lower probability of death, while an increase in
red features (e.g. higher Age or longer hospitalizations) rep-
resent a higher chance of death. The darker the colour, the
greater feature impact on mortality for given time limit. Indi-
vidual models for each time limit included predictive features

derived from patient demographics, vitals, laboratory tests
reflecting control of anaemia, liver and kidney function as
well as minerals. ECG parameters included features reflecting
atrio-ventricular activation and repolarization. From Doppler
echocardiography data, features reflected concomitant aortic
and mitral valve disease, LV filling pattern and function. For
the primary model predicting 1 year mortality, 10 most signif-
icant (P < 0.001) predictors included age, haemoglobin, any
hospitalization multiplied by length of stay, severely reduced
systolic LV function, NT-proBNP, hyperlipidaemia, urea, chlo-
ride, WBC count and maximum transaortic valve pressure
gradient. A PM-Aalst HF mortality calculator is available for
external use on independent datasets in the supporting
information.

Discussion

The present study investigates the potential of machine learn-
ing in predicting mortality using a continuum of digitally re-
corded parameters reflecting real-world care pathways in pa-
tients initially hospitalized with a new onset or worsened HF.
A novel PM-Aalst HF system consisting of multiple ML models
yielded robust performance in predicting all-cause 30 day,
90 day, 180 day, 1 year, and 2 year mortality. Performance
was consistent across heart failure phenotypes and disease
modifiers. We have identified networks of significant features
within each model that are pointing at congruent pathophysio-
logical mechanisms impacting the mortality risk at individual
time limits. The model appears to show enhanced performance
when predicting on data accumulated over time capturing
trends and patterns in medical records during the follow-up.

Circulating biomarkers and clinical risk scores are often
suboptimal for patient-level risk stratification. Besides the
heterogeneity of heart failure phenotypes, this is likely re-
lated to insufficient multimodality of individual risk scores
and their static nature, relying mainly on conventional
statistical analyses predicting outcome at baseline or single
observation timepoints. Machine learning and artificial
intelligence may efficiently dissect the big data from elec-
tronic health records and identify traits linking predictive
factors to disease state and its outcome in a comprehensive
way.13 Their use has been recently showcased by the
ML-based Semmelweis CRT score in the HF subset of
patients undergoing cardiac resynchronization.

Our approach is innovative as we seized the entirety of dig-
ital health care records reflecting individual patient manage-
ment from the initial contact at index hospitalization longitu-
dinally throughout the care pathway. This approach yielded a
large dataset capturing disease evolution and modifications
in the clinical management over time. We selected patients
hospitalized with a new onset or worsened heart failure in
a tertiary centre with a dedicated heart failure clinic. Utilizing

Figure 4 One year mortality model AUC on validation set showcasing
performance on different data collection timeframes from index hospital
admission.
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more than 400 clinically relevant parameters over a follow-up
till 9.5 years, the presented PM-Aalst HF system identified a
set of 40 most significant predictors of 1 year mortality with
a robust performance across heart failure phenotypes, risk
factors and disease modifiers such as gender, obesity, diabe-
tes, renal insufficiency or ischemic aetiology. Predictive per-
formance was higher in patients under 65 years as compared
with elderly patients (>85 years). Likewise, longitudinal data
accumulation over time enhanced performance of 1 year
mortality model compared to initial evaluation at initial index
admission. The system appears to provide higher predictive
performance as compared to traditional risk scores14–16 or
similar ML-based approaches in subset of HF patients under-
going CRT.6,17 Monitoring over 400 parameters over time and
re-calibrating mortality prediction at any patient contact, it
can serve as a point-of-care approach in personalized care
pathways and risk stratification.

Our findings also showcase the potential of non-selective
machine learning methodology to identify a network of fea-
tures acting congruently in one system to predict mortality
at individual time limits. Besides reinforcing the relevance of
expected features such as age, hospitalization and its length
or established biomarkers such as NT-proBNP and ST2 protein,
it points at the relevance of proactive ambulatory patient
management within the heart failure clinic in mitigating the
patient’s risk. Others provide insights into potential interplay
of parameters reflecting inflammation, liver and renal function
in affecting the outcome. Here, higher chloride levels
emerged as strongly correlating with reduced mortality risk
pointing at its relevance in patient’s surveillance.18 Likewise,

hyperlipidaemia19 as a risk factor was associated with a protec-
tive effect on mortality. ML models also confirm the relevance
of abnormal ECG repolarization, abnormal Doppler filling pat-
tern or right sided function as well as aortic or mitral valve dis-
ease. Features reflecting LV structure and regional and global
function complemented the overall traits underlying the
model performance. It is of note that all patients were under
optimal medical regimen in given time period of standard of
care and yet use of vitamin B and D appeared to contribute
by lowering the mortality risk in short term. These notions sug-
gest that machine learning approaches may be instrumental in
providing comprehensive insights into pathophysiological
traits underlying diseases states and potentially reveal new in-
sights into the mechanisms of their progression.

Following methodological aspects should be noted. In the
developmental phase, we tested multiple preprocessing
strategies and their effect on the performance metric as
reflected by area under the curve. In this approach, days until
death appeared superior to the use of categorical variables
for outcome classification. As shown in Supporting Informa-
tion, Figure S1, transforming this outcome variable using a
sigmoid function has forced the models to detect differences
between data points adjacent to the observed mortality time
limit with higher distinction.

Several limitations are to be acknowledged. Our study
cohort represents a single center experience from a tertiary
centre with a dedicated heart failure unit and findings needs
to be validated in an external patient cohort. The generation
of a baseline parameter balanced third split, representing a
testing data set to provide an unbiased evaluation was not

Figure 5 Head-to-head comparison of PM-Aalst HF 1 year mortality prediction model as compared to other risk scores. Left panel shows comparison
on full validation set. Right panel shows model performance only on the subset of CRT implanted patients to ensure fair comparison with the
SEMMELWEISS-CRT score.
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possible due to the limited size of the included patient popu-
lation. In this regard, model overfitting was mitigated by sub-
sequent random cross-validation. Our model is also based on
electronic data recordings and model performance needs to
be addressed in other settings of care and in all-around pa-
tients with heart failure. Our comprehensive model is scal-
able and consists primarily of routine parameters gathered
in the current standard of care. However, some features, such
as the ST2 biomarker may not be available across different ge-
ographies of the healthcare systems. It should be noted that
only NT-proBNP and ST2 biomarkers were used and potential
contribution of other novel biomarkers in improving the model
performance needs to be investigated.20 This is of potential
relevance with regard to the observed consistency of the
model performance in all heart failure phenotypes. Current
features identified by the model point at their synergistic in-

volvement in pathophysiologic traits underlying overall heart
failure syndrome. Nevertheless, it is possible that the inclusion
of other parameters, in particular biomarkers or novel
strain-derived echocardiographic parameters, could provide
more granularity in the refinement of models with regard to
distinctive feature panels for either HF phenotype.21

Clinical implications and conclusions

The current study presents a novel, reproducible, ML-based
risk prediction system for all-cause mortality in heart failure
patients that combines a multimodality of electronic data re-
cordings in the continuum of standard of care. Such predic-
tion of mortality is important for either short or long-term
patient-tailored decision making to optimize the care and

Figure 6 Heatmap of 40 most significant (p < 0.05) features predicting all-cause mortality for respective time limits with their weighted influence.
Blue color relates to the lower probability of death, the red color indicates higher death probability. Color intensity corresponds to the weighted in-
fluence on mortality. ECG, Electrocardiography parameters; ECHO, Echocardiography parameters; TRFERR, Transferrin; WBC,White blood cells; CRP, C-
Reactive protein; GOT, Aspartate Aminotransferase; RV, Right Ventricle; AV, aortic valve; PG, pressure gradient; MR, Mitral regurgitation; ERO, Effec-
tive Regurgitant Orifice; VTI, Velocity time integral; IVRT, Isovolumic relaxation time; IVS, Interventricular septum thickness; LVEDD, Left Ventricular
Dimension in diastole; LV, Left Ventricle.
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overall management. Deploying the in-depth granular ap-
proach in a cohort of patients hospitalized with a new onset
or worsened heart failure, the models demonstrated robust
predictive performance across heart failure phenotypes and
background risk factors. Deeper analysis revealed the rele-
vance of features reflecting multiple pathophysiological traits
fundamental for the prognosis of a heart failure patient. The
presented model also allows for external validation on inde-
pendent patient datasets (see supporting information). The
system’s ability to recalibrate prediction at every follow-up
patient contact, suggests the potential of ML-based predic-
tive models as a point-of-care approach embedded into elec-
tronic hospital information systems. This may guide clinical
risk stratification and efficiently modify personalized care
pathways. The findings warrant further validation in broader
patient populations including all-comers with heart failure re-
gardless of their index presentation or other cardiovascular
disease subsets. Future studies should also explore the sys-
tems potential in personalized risk prediction of other rele-
vant outcomes including unplanned hospital readmissions
or responsiveness to therapeutic interventions.
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