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Aims A majority of acute coronary syndromes (ACS) present without typical ST elevation. One-third of non—ST-elevation myo-
cardial infarction (NSTEMI) patients have an acutely occluded culprit coronary artery [occlusion myocardial infarction
(OMI)], leading to poor outcomes due to delayed identification and invasive management. In this study, we sought to develop
a versatile artificial intelligence (Al) model detecting acute OMI on single-standard 12-lead electrocardiograms (ECGs) and
compare its performance with existing state-of-the-art diagnostic criteria.

Methods An Al model was developed using 18 616 ECGs from 10 543 patients with suspected ACS from an international database with

and results clinically validated outcomes. The model was evaluated in an international cohort and compared with STEMI criteria and ECG
experts in detecting OMI. The primary outcome of OMI was an acutely occluded or flow-limiting culprit artery requiring emer-
gent revascularization. In the overall test set of 3254 ECGs from 2222 patients (age 62 + 14 years, 67% males, 21.6% OMI), the
Al model achieved an area under the curve of 0.938 [95% confidence interval (Cl): 0.924-0.951] in identifying the primary OMI
outcome, with superior performance [accuracy 90.9% (95% Cl: 89.7-92.0), sensitivity 80.6% (95% Cl: 76.8-84.0), and specificity
93.7 (95% Cl: 92.6-94.8)] compared with STEMI criteria [accuracy 83.6% (95% Cl: 82.1-85.1), sensitivity 32.5% (95% Cl: 28.4—
36.6), and specificity 97.7% (95% Cl: 97.0-98.3)] and with similar performance compared with ECG experts [accuracy 90.8%
(95% ClI: 89.5-91.9), sensitivity 73.0% (95% Cl: 68.7—77.0), and specificity 95.7% (95% Cl: 94.7-96.6)].

Conclusion The present novel ECG Al model demonstrates superior accuracy to detect acute OMI when compared with STEMI criteria.
This suggests its potential to improve ACS triage, ensuring appropriate and timely referral for immediate revascularization.
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Structured Graphical Abstract

Key question

Can an artificial intelligence (Al) model detect an acutely occluded or obstructive culprit coronary artery [occlusion myocardial infarction (OMI)] lesion using
only single-standard 12-lead electrocardiograms (ECGs)?

Key finding

The occlusion myocardial infarction Al ECG model outperforms guideline-recommended ST-elevation myocardial infarction (STEMI) criteria in detecting
angiographically confirmed OMI and remains robust in subgroup analysis.

Take home message

The OMI Al ECG model has the potential to improve acute coronary syndrome triage and clinical decision-making by enabling timely and accurate detection
of OMl regardless of ST elevation. This automated deep learning approach demonstrated two times higher sensitivity in detecting angiographically confirmed

OMI from single-standard 12-lead ECGs compared to the standard of care in geographically distinct cohorts.

Test set cohort
Patents (1 = 2.222)

=}~ Unique ECGs, n 3,254
@ Geography, n (%) Europe 1,589 (72.0)
United States 633 (28.0)

Z Age [years], mean (SD) 62 (14.0)
q Gender, n (%) Female 747 (33.0)
Male 1,516 (67.0)

. ) Not-OMI 1,774 (78.4)

Primary endpoint, n (%)
Q. OMI 489 (21.6)

Independent blinded evaluation

OMI Al model:
@ omi

STEMI criteria:
QoM
ECG experts:
@ oM

Electrocardiogram e Artificial intelligence ® Acute coronary syndrome ® Myocardial infarction ® Occlusion myocardial

infarction ® NSTEMI

Introduction

Patients with an acutely occluded or obstructive culprit coronary artery
(acute coronary occlusion myocardial infarction, abbreviated as ‘OMI’),
who will benefit from emergent reperfusion therapy, are currently
identified on the basis of electrocardiographic ST-segment elevation
[ST-elevation myocardial infarction (STEMI)]."?* However, the patho-
physiology of acute coronary syndrome (ACS) due to thrombotic oc-
clusive coronary stenosis is often dynamic and may impact
electrocardiogram (ECG) appearance at the time of the first patient
contact. Accordingly, growing evidence suggests that the current
ACS classification dichotomizing patients as STEMI or non-STEMI
(NSTEMI) is unsatisfactory for the timely diagnosis of OMI, as also

Primary endpoint (reference standard)
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. ’ o STEMI criteria 0.651 32.5% 97.7%
00| " + ECG experts 0.843 73.0% 95.7%
0.0 0.2 04 0.6 0.8 1.0
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recognized by the 2022 American College of Cardiology Chest Pain
Expert Consensus.® On the one hand, 25-30% of NSTEMI patients pre-
sent with acute coronary occlusion with insufficient collateral circula-
tion as discovered only on delayed coronary angiography (CAG).*
The delayed invasive management in these patients is associated with
two-fold higher short-term and long-term mortality.*> On the other
hand, 15-25% of catheterization laboratory activations due to sus-
pected STEMI eventually reveal no culprit lesions or a non-ischaemic
aetiology of ST elevation (STE).*® A plethora of ECG criteria have
been proposed to increase diagnostic sensitivity for OMI compared
with the current guideline-based STEMI criteria and to differentiate
OMI from mimics.>>?~"° Yet, their adoption is limited due to their
complexity and unclear inter-evaluator reliability.
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Recently, a machine learning approach has outperformed standard
ECG criteria in detecting acute OMI correlating 73 hand-selected mor-
phological ECG features and clinical parameters.'® In this study, we
introduce an international validation of an automated deep learning
artificial intelligence (Al) model detecting acute OMI using only a single-
standard 12-lead ECG as input and hypothesize that it would outper-
form the existing state-of-the-art ECG criteria for the detection of
acute OMI and match the performance of interpreters with special ex-
pertise in ECG OMI diagnosis.

Methods
Study design

This is a retrospective study following four key stages: (i) the development
of an OMI Al model for the detection of acute OMI using only single-
standard 12-lead ECGs as input (‘derivation cohort’); (i) the evaluation of
a blinded Al model in a geographically distinct test set spanning Europe
and USA; (iii) the comparison of an Al model with the existing
state-of-the-art criteria detecting OMI using 12-lead ECGs; and (iv) the per-
formance analysis of an Al model in subgroups. Each of these steps is de-
scribed below. This retrospective study was approved by the local ethics
committee for human research and complied with the Declaration of
Helsinki.

Data sources and processing

Clinical data from 9764 patients who presented with suspected ACS to the
Cardiovascular Centre Aalst in Belgium during the period between 2011
and 2021 and a clinically validated international image database of 2368
ACS patients (see Supplementary material online for a detailed description)
were considered for the Al model development and testing. Waveform
data, sampled at 500 Hz, were exported from the MUSE ECG data manage-
ment system (GE Healthcare, Chicago, IL, USA) in XML format. The images
of ECG tracings from multiple device vendors within the international image
database of ACS patients were converted to digital waveforms using
CE-certified PMcardio ECG digitization technology (Powerful Medical,
Samorin, Slovakia). Electrocardiograms recorded >24 h before CAG and
post-CAG or ECGs with poor signal quality were discarded. The patients
retained upon exclusions were randomly split into a model development
(derivation) set and an internal Europe (EU) testing data set, ensuring
that patients with more than one (recurrent) ACS contact were present
in only one of the sets. Time from the first ECG to intervention was re-
corded for all cases if the patients underwent coronary angiography. The
derivation set included ECGs adjudicated as OMI or not OMI by inter-
preters with special expertise in ECG OMI diagnosis (S.W.S. and H.P.M.)
and by clinically validated angiographic outcome data (see details below un-
der ‘Occlusion myocardial infarction artificial intelligence model develop-
ment’). ‘Not OMI" encompasses patients who either do not have acute
myocardial infarction (MI) or have acute non-occlusion M| (non-OMI or
NOMI) with either no culprit vessel identified angiographically or where
the identified culprit vessel does not require immediate revascularization.
A full overview of the data sources and inclusions and exclusions is available
in Figure 1.

Primary and secondary outcomes

The primary outcome was the Al model’s ability to identify patients with
angiographically confirmed OMI using only single-standard 12-lead ECGs.
The primary definition of OMI was modelled from previous stud-
ies>>*1917-1% and consisted of clinical symptoms and a troponin elevation
consistent with the fourth universal definition of MI%° and angiographic evi-
dence of acute culprit coronary stenosis with either (i) a thrombolysis in
myocardial infarction (TIMI) flow grade of 0—1 or (ii) a TIMI flow grade of
2-3 with emergent or urgent percutaneous revascularization. Patients with-
out any dynamic changes detected in serial biomarker testing were safely
ruled out for OMI regardless of undergoing coronary angiography. This out-
come was considered the reference standard for all analyses unless other-
wise specified.

Secondary outcomes included the following: (i) OMI Al model perform-
ance across demographic and electrocardiographic subgroups; (i) a com-
parison of the Al model performance against the existing criteria for
detecting acute coronary occlusion from 12-lead ECGs,”* (iii) a sensitivity
analysis of Al model performance using different angiographic and labora-
tory cut-offs of OMI, and (iv) an analysis of misclassified cases.

Occlusion myocardial infarction artificial

intelligence model development

Digital and digitized 12-lead ECG input data collected from sources described
above were standardized into a 3 X 4 ECG format (2.5 s per lead). For longer
ECG formats, the first 2.5 s of limb leads and the last 2.5 s of pre-cordial leads
were used. The model development set was further subdivided into a training
set and a validation set. A deep convolutional neural network architecture was
deployed in model development and included two key components: feature
extraction and classification. The feature-extraction component, comprised
of two convolutional layers and six residual blocks (~60000 parameters),
was designed to extract features in a lead-specific manner. The second classi-
fication component combined all extracted features and processed them
through two fully connected layers (~150000 parameters). An analysis of
each lead, and an integration of the knowledge gained, mimic the analytical ap-
proach of human experts to make a final diagnosis. Artificial intelligence model
explainability is described in the Supplementary material online. The validation
data set was used for hyperparameter tuning and threshold selection. The op-
timal model threshold was selected by maximizing Matthew’s correlation
coefficient (MCC). An additional threshold was selected to match the specifi-
city of STEMI criteria.

EU internal testing data set

Independent clinical reviewers adjudicated the angiographic data of all pa-
tients included in the EU internal testing data set. The process of clinical
verification included the blinded identification of culprit vessels, their visual
assessment of coronary stenosis, TIMI flow, the presence of sufficient col-
lateral flow on all individual angiograms, and the documentation of treat-
ment strategy. If applicable, revascularization time, defined as the duration
between the first ECG and the time when a balloon was inflated or when
the wire crossed the lesion, was documented.

US external testing data set

Electrocardiogram and outcome data from the Diagnosis of Occlusion Ml
And Reperfusion by Interpretation of the electrocardioGram in Acute
Thrombotic Occlusion (DOMI ARIGATO) database (clinical trials.gov num-
ber NCT03863327) were included in the US external testing cohort. Data
collection and processing of this database are explained elsewhere.? Briefly,
the DOMI ARIGATO database collected ECGs, laboratory data, and the clin-
ically verified angiograms of patients presenting with ACS at two US sites,
Stony Brook University Hospital and Hennepin County Medical Center.
Electrocardiograms were interpreted and manually annotated by ECG ex-
perts blinded to all clinical data other than age and sex. Baseline ECGs,
post-CAG ECGs, and ECGs with missing expert annotations were removed
from the testing cohort.

Benchmarking

The performance of the developed Al model was evaluated by comparing it
with blinded physician annotations of electrocardiographic ‘STEMI criteria’
as a surrogate indicator of OMI, as well as subjective ECG expert annota-
tions of OMI referred to as ‘ECG Experts’. The presence of STEMI criteria
was assessed based on the fourth Universal Definition of Myocardial
Infarction and included new STE >1 mm in two contiguous leads other than
leads V2 and V3 (where STE >2 mm in men >40 years, >2.5 mm in men
<40 years, and >1.5mm in women).*® Two ECG experts (SWS. and
H.P.M.) with expertise in OMI detection (94% agreement, kappa = 0.849) an-
notated all tracings for the presence of OMI, blinded to all clinical information.”
All ECGs in the overall testing data set were independently labelled using the
two methods described in this paragraph. In patients with multiple ECGs prior
to coronary angiography, a maximum interpretation per patient was retained
for the benchmarking. The time to diagnose OMI was noted for each criterion
by measuring the duration from the patient’s initial ECG to the accurate
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Model development (derivation) set
ECGs: n = 18,616 (6,105 Class OMI)
Patients: n = 10,543
Contacts: n = 10,692 (2,450 Class OMI)

EU Internal Test Set
ECGs: n = 2,016 (453 Class OMI)
Patients: n = 1,589
Contacts: n = 1,630 (240 Class OMI)

US External Test Set
ECGs n = 1,238 (466 Class OMI)
Patients: n = 633

Contacts: n = 633 (213 Class OMI) I

-

Figure 1 A PRISMA flow chart showing data sources and study populations. Suspect acute coronary syndrome patients identified, exclusions (in
grey), and the final study population split into a model development set (in green), EU internal test set (in blue), and US external test set (in red).
ECG, electrocardiogram; ACS, acute coronary syndrome; pts, patients; CAG, coronary angiography; Ml, myocardial infarction; OMI, occlusion myo-

cardial infarction.

Table 1 Sample characteristics of the model development and EU and US test sets

Parameter Cat. Model Overall test P-value Internal EU External US P-value (overall
development set set (all) test set test set test sets)
Unique patients, n 10543 2222 1589 633
Unique ECGs, n 18616 3254 2016 1238
Age (years), mean (SD) 66 (14.0) 62 (14.0) <0.001 63 (14.0) 61 (14.0) <0.001
Gender, n (%) Female 3394 (34.1) 747 (33.0) 0.336 543 (33.3) 204 (32.2) 0.658
Male 6560 (65.9) 1516 (67.0) 0.336 1087 (66.7) 429 (67.8) 0.658
Unique contacts, n 10692 2263 1630 633
Primary outcome, n (%) Class non-OMI 8242 (77.1) 1774 (78.4) 0.187 1370 (84.0) 404 (63.8) <0.001
Class OMI 2450 (22.9) 489 (21.6) 0.187 260 (16.0) 229 (36.2) <0.001

Values in bold indicate statistically significant differences (p < 0.05).

Cat., category; SD, standard deviation; OMI, occlusion myocardial infarction; ECG, electrocardiogram.

identification of OMI on subsequent ECGs. In cases where the criteria were
unable to detect OMI in any ECG before CAG, the time to diagnosis was con-
sidered equivalent to the time to CAG.

Statistical analyses

Statistical analysis was performed using Python programming language and
the following open-source libraries: tableone, lifelines, and pandas.
Continuous statistics with normal distribution were expressed as mean +
standard deviation and compared by using Student’s t-tests. Continuous vari-
ables with a non-normal distribution were presented as median with inter-

quartile ranges (IQRs) and reached by the Mann—Whitney U test.? If appro-
priate, categorical variables were reported by frequencies and percentages
and compared with the y* test and Fisher’s exact test. The performances
of the OMI Al model, ECG experts, and STEMI criteria were evaluated using
the following standard evaluation metrics: sensitivity, specificity, accuracy,
negative predictive value, positive predictive value, MCC, and area under
the curve (AUC). For all evaluation metrics, we estimated the confidence
intervals (Cls) at 95% by 10 000 iterations of the bootstrap method.?? In
the subgroup analysis, patients’ ECGs were stratified according to ECG
measurement (QRS duration and heart rate) and ECG diagnostic annota-
tions (rhythm, ventricular hypertrophy, bundle branch blocks).

20z Ae vz uo 1sanb Aq 262€5 /€2 1/2/G/a191ME/yplys/wod dno-dlwapese//:sdiy woly papeojumoq



Al ECG detecting occlusion myocardial infarction

127

Table 2 Procedural characteristics of the patient contacts in the EU and US test sets

Parameter Cat. Overall test sets Internal EU test set External US test set P-value
ECG presentation, n (%) STEMI 186 (8.2) 76 (4.7) 110 (17.4) <0.001
Non-STEMI 2077 (91.8) 1554 (95.3) 523 (82.6) <0.001
Average ECGs per patient, mean (SD) 1.4 (0.9) 2(0.6) 20(1.2) <0.001
Admission troponin T (ng/L), median (Q1, Q3) 74 (42,13.5) 4 (4.2,13.5) NA NA
Peak troponin T (ng/L), median (Q1, Q3) 31.8 (5.0, 1457.2) 11.8 (4.3, 340.5) 340.0 (11.0, 2820.1) <0.001
CAG performed, n (%) 1408 (62.2) 948 (58.2) 460 (72.7) <0.001
Time to CAG (h), median (Q1, Q3) 134 (2.5, 19.6) 17.3 (4.9, 204) 3.8 (0.8, 15.1) <0.001
Time to CAG, n (%) Late (12-24 h) 715 (50.9) 576 (61.0) 139 (30.2) <0.001
Delayed (4-12 h) 256 (18.2) 167 (17.7) 89 (19.3) <0.001
Early (24 h) 123 (8.8) 72 (7.6) 51 (11.1) <0.001
Immediate (<2 h) 310 (22.1) 129 (13.7) 181 (39.3) <0.001
Culprit vessel, n (%) None 1632 (72.1) 1316 (80.7) 316 (49.9) <0.001
Native 605 (26.7) 298 (18.3) 307 (48.5) <0.001
Graft 26 (1.1) 6 (1.0) 10 (1.6) <0.001
Culprit artery, n (%) LMCA 1 (1.7) 6 (1.9) 5(1.6) <0.001
LAD 234 (37.1) 113 (36.0) 121 (38.2) <0.001
LCx 142 (22.5) 59 (18.8) 83 (26.2) <0.001
RCA 220 (34.9) 130 (41.4) 90 (28.4) <0.001
PDA 9(1.4) 0 (0.0 9(2.8) <0.001
RI 11(01.7) 2 (0.6) 9(28) <0.001
Multi-vessel 4 (0.6) 4(13) 0 (0.0) <0.001
Culprit stenosis (%), median (Q1, Q3) 90.0 (70.0, 100.0) 80.0 (60.0, 100.0) 95.0 (90.0, 100.0) <0.001
Culprit TIMI flow, n (%) TIMI-O 244 (38.6) 119 (37.8) 125 (39.4) 0.911
TIMI-1 38 (6.0) 9 (6.0 19 (6.0) 0.911
TIMI-2 70 (11.1) 33 (10.5) 37 (11.7) 0.911
TIMI-3 279 (44.2) 143 (45.5) 136 (42.9) 0.911
Collateral flow, n (%) None 284 (90.4) 284 (90.4) NA NA
Mild 16 (5.1) 6 (5.1) NA NA
Moderate 12 (3.8) 2 (3.8) NA NA
High 2 (0.6) 2 (0.6) NA NA
Time to revascularization (h), median (Q1, Q3) 7.5(2.1,19.3) .5(2.1,19.3) NA NA
Treatment, n (%) Conservative 706 (50.1) 525 (554) 181 (39.3) <0.001
PCI 699 (49.6) 422 (445) 277 (60.2) <0.001

Values in bold indicate statistically significant differences (p < 0.05).

Cat., category; CAG, coronary angiography; ECG, electrocardiogram; STEMI, ST-elevation myocardial infarction; SD, standard deviation; LMCA, left main coronary artery; LAD, left
anterior descending artery; LCx, left circumflex artery; NA, not available; RCA, right coronary artery; PDA, posterior descending artery; Rl, ramus interventricularis; TIMI,

Thrombolysis in myocardial infarction; PCI, percutaneous coronary intervention.

Results

Derivation set characteristics

A total of 18 616 ECGs from 10 543 patients (age 66 + 14 years, 65.9%
males, 22.9% OMI) with clinically validated outcomes originating from
the Cardiovascular Centre Aalst and an international image database
of ACS patients were included in the Al model development. The sam-
ple characteristics are shown in Table 1.

Test set characteristics

The procedural characteristics of both testing cohorts are given in
Table 2. The overall test set included 3254 ECGs from 2222 patients
(age 62+ 14 vyears, 67% males, 21.6% OMI). Of these, 2016 ECGs
from 1630 contacts [with 240 (16%) OMI] were from the internal EU

testing cohort, and 1238 ECGs from 633 contacts [with 213 (36.2%)
OMI] were from the US testing cohort. The prevalence of OMI differed
between the internal EU and the external US test sets, 16% compared
with 36.2%, respectively (P <0.001). The contacts included in the US
test set were younger, had more ECGs recorded before catheterization,
and were more likely to present with a STEMI-positive ECG. Gender,
peak troponin, and the TIMI flow of culprit vessels did not differ signifi-
cantly between the two cohorts.

Artificial intelligence model performance

The OMI Al model with an optimal threshold (threshold of 0.1106)
achieved an AUC of 0.938 [95% Cl: 0.924-0.951] in identifying the pri-
mary outcome of OMI (Figure 2) on the overall test set. Model perform-
ance was comparable on both the EU internal (see Supplementary
material online, Figure STA) and US external testing data sets (see
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ROC Curves on Testing Dataset
(n = 2,263 contacts [21.61% OMI]; n = 3,254 ECGs)
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Figure 2 Artificial intelligence model performance on the overall testing data set. The receiver operating characteristic curve of the occlusion myo-
cardial infarction artificial intelligence model (red) and the sensitivity and specificity of the occlusion myocardial infarction artificial intelligence model
optimal threshold (red X), STEMI criteria (green dot), and electrocardiogram experts (purple cross) on combined EU and US testing cohorts. The AUC
is 0.938 [n=12263 contacts (21.61% occlusion myocardial infarction)]. OMI, occlusion myocardial infarction; Al, artificial intelligence; STEMI,

ST-elevation myocardial infarction.

Supplementary material online, Figure S1B) and achieved an AUC of
0.946 (95% Cl: 0.925-0.961) and of 0.903 (95% Cl: 0.893-0.939), re-
spectively (see Supplementary material online, Figure ST).

Subgroup performance

The average Al model performance of all individual ECGs in the testing
data set was compared with different demographic and electrocardio-
graphic subgroups (Figure 3). The model yielded stable sensitivities
across gender and age groups (ranging from 71.9 to 78.4%).
Specificity was slightly higher in patients under 45 (95.9%, P =0.032)
and in patients aged 45-65 (91.8%, P =0.045). Sensitivity was higher
for patients presenting with a STEMI ECG [93.3% (95% CI: 90.0—
96.2%; P <0.001) vs. 67.6% (95% Cl: 64.1-70.7%; P < 0.001)], while
specificity tended to be higher for patients presenting without STE
on their index ECG [94.2% (95% Cl: 93.2-94.3%), P=0.136 vs.
68.7% (95% ClI: 57.6-80.0%), P < 0.001]. Higher performance was re-
corded for ECGs with tachycardia over 100 b.p.m. [87.3% sensitivity
(95% ClI: 81.9-92.2%), P < 0.001 and 96.5% specificity (95% Cl: 94.0—
98.7%), P=0.024], while the sensitivity of ECGs with broad QRS
complex >120 ms was lower [57.9% sensitivity (95% Cl: 48.6—
67.7%), P=0.002]. The performance of the model was consistent
across ECG rhythms with a significantly higher specificity of 99.3%
[(95% Cl: 97.9-100%), P <0.001] for ECGs with atrial fibrillation.
Artificial intelligence model sensitivity did not significantly differ across
different culprit artery territories; nevertheless, specificity was lower in

patients with left anterior descending artery and right coronary ar-
tery culprit territories [83.6% (95% Cl: 76.6-90.2%), P = 0.003 and
80.6% (95% Cl: 70.0-89.2%), P =0.008, respectively]. Model per-
formance was comparable when tested on secondary definitions
of OMI with different TIMI flow and troponin cut-off combinations,
as well as the occurrence of percutaneous coronary intervention
(PCI; Table 3).

Artificial intelligence model benchmarking

The OMI Al model was compared against two standard criteria asses-
sing the same 12-lead ECGs in the overall test set for the presence of
OMI (Table 4). At the optimal threshold, the OMI Al model exhibited a
significantly higher sensitivity in identifying OMI compared with STEMI
criteria [80.6% (95% Cl: 76.8-84.0%) vs. 32.5% (95% Cl: 28.4-36.6%),
P <0.001] and was statistically equal to ECG experts [73.0% (95%
Cl: 68.7-77.0%)]. Accuracy in detecting OMI was equal between the
OMI Al model and the experts and significantly higher when compared
with STEMI criteria. Specificity was highest for STEMI criteria [97.7%
(95% Cl: 97.0-98.3%)] compared with ECG experts [95.7% (95% Cl:
94.7-96.6%)] and OMI Al model [93.7% (95% ClI: 92.6-94.8%)]. The
comparison of all independently tested criteria for OMI diagnosis is
summarized in Supplementary material online, Table S7.

The mean time to OMI diagnosis was significantly shorter for the OMI
Al model compared with STEMI criteria, 2.3 vs. 5.3 h, respectively (P <
0.001; see Supplementary material online, Figure S2), but comparable
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Subgroup No. ECGs (%) No. of OMI (%) Sensitivity plot Sensitivity (95% CI) p-value Specificity plot  Specificity (95% Cl) p-value
No. ECGs (%) 3254 (100.0%) 979 (30.1%) - 746% (71.81077.4) — - 93.4% (92.310 94.4) —
Gender |

Male 2219 (68.2%) 771 (34.7%) - 73.5% (70.6 to 76.5) 0.522 + 93.2% (91.910 94.5) 0.803

Female 1035 (31.8%) 208 (20.1%) —— 78.4% (72.910 84.1) 0.17 +  93.7%(9210953) 0.766
Age

<45 328 (10.1%) 66 (20.1%) —— 72.7% (61.81083.9) 0.761 —-— 96.2% (93.6 10 98.2) 0.032

45-65 1417 (43.5%) 447 (31.5%) L 77.6% (73.510 81.4) 0.157 = 91.8%(89.71093.4) 0.045

265 1500 (46.4%) 466 (30.9%) —- 71.9% (67.810 75.7) 0.179 = 942%(92.71095.6) 0.253
STEMI at presentation i

STEMI 334 (10.3%) 267 (79.9%) -= 93.3% (90 to 96.2) <0.000 ——=—— i 68.7% (57.6 10 80)  <0.001

not-STEMI 2920 (89.7%) 712 (24.4%) - 67.6% (64.110 70.7) <0.001 = 04.2%(93.21095.1) 0.136
QRS duration 1

<120 2806 (86.2%) 872 (31.1%) - 76.6% (73.81079.3) 0.154 * 93.2% (9210 94.3)  0.669

=120 448 (13.8%) 107 (23.9%) e 57.9% (48.6 10 67.7) 0.002 - 04.7%(92.21097) 0.286
BPM

<100 2875 (88.4%) 829 (28.8%) -- 72.3% (69.210 75.3) 0.153 - 93.1% (91.910 94.2) 0.568

=100 379 (11.6%) 150 (39.6%) —=— §7.3% (81.91092.2) <0.001 —-— 96.5% (9410 98.7)  0.024
Rhythm !

Sinus 2897 (89.0%) 893 (30.8%) - 74.9% (72110 77.8) 0.77 - 93.3% (92.2 10 94.3) 0.811

Paced 133 (4.1%) 21 (15.8%) —_— 52.4% (30.8 10 75) 0.051 —=— 91.1% (85.51096.1) 0.405

AF 189 (5.8%) 45 (23.8%) — = 756% (2.51087.5) 0.907 | = 99.3% (97.910 100) <0.001
VH 898 (27.6%) 245 (27.3%) —ar 71% (65.1 to 76.5) 0.224 -- 92.8% (90.8 10 94.7) 0.566
LBBB 246 (7.6%) 64 (26.0%) — 60.9% (49.1 10 72.1) 0.014 —+—  03.4% (89.81096.9) 0.957
RBBB 548 (16.8%) 133 (24.3%) — 70.7% (63 to 78.3)  0.323 = 96.6% (94.810 98.3) <0.001
Culprit artery '

LAD 456 (14.0%) 346 (75.9%) - 78.3% (73.910 82.5) 0.098 —— | 83.6% (76.6 10 90.2) 0.003

RCA 421 (12.9%) 359 (85.3%) . 76% (71510 80.2)  0.493 —=—— | B06%(701089.2) 0.008

LCx 286 (8.8%) 235 (82.2%) —— 68.9% (62.910 74.6) 0.051 —_— 84.3% (73.910 94.3) 0.077

Other 65 (2.0%) 39 (60.0%) —— 61.5% (46.210 76.9) 0.087 4-— 80.8% (64.310 95.2) 0.08

None 2026 (62.3%) 0 (0.0%) o = 94.7%(93.71095.7) 0.013

P (S P M e R
0.4 0.5 06 0.7 0.8 0.9

06 07 08 09 1

Figure 3 A subgroup analysis of the sensitivity and specificity of the occlusion myocardial infarction artificial intelligence model. The vertical dashed
red line represents the overall artificial intelligence model sensitivity and specificity across all electrocardiograms in the testing data set. ECG, electro-
cardiogram; STEMI, ST-elevation myocardial infarction; AF, atrial fibrillation; VH, ventricular hypertrophy; LBBB, left bundle branch block; RBBB, right
bundle branch block; LAD, left anterior descending artery; RCA, right coronary artery; LCx, left circumflex artery.

with ECG experts, with a mean time of 2.9 h (P = 0.08). Patients with OMI
received interventions at a similar rate regardless of the presence of
STEMI criteria and outcome definition [primary outcome definition,
97.3 vs. 95.9% (P =0.570); strictest OMI outcome (TIMI 0—1 flow only),
96.3 vs. 92.4% (P = 0.358; see Supplementary material online, Table S2].

Analysis of misclassified cases

Patients identified as OMI but who did not meet the primary outcome
definition were labelled as OMI false positives; this occurred in 111
cases with the OMI Al model, in 41 cases with STEMI criteria, and
in 77 cases by ECG experts (see Supplementary material online,
Table $3). In OMI false positives with the Al model, the rate of myo-
cardial injury (troponin elevation with absence of acute myocardial in-
farction) was significantly higher when compared with OMI false
positives with STEMI criteria [16 (14.4%) vs. 1 (2.4%) respectively,
P =0.042] but similar to OMI false positives by ECG experts [11
(14.3%), P=0.392].

Of the 330 OMI patients (67.5% of all OMI) missed by STEMI criteria
(false negatives), only 112 (33.9%) had a time to revascularization of <2 h,
while 133 of the remaining 218 false-negative OMI patients (61.0%) were
correctly identified by the OMI Al model using the first ECG. These pa-
tients had a median revascularization time of 9.3 h (IQR 4.3, 16.9). The
OMI Al model correctly classified 56 (42%) false negatives of ECG ex-
perts. These patients had a median time to CAG of 7.2 h (IQR 3.2,
17.2), and 58.9% had culprit lesions in the inferior or posterior territory.

Discussion

We developed and validated a novel explainable Al model to detect
acutely occluded or obstructive culprit coronary artery from a single in-
dividual 2.5 s 12-lead ECG recorded in patients with suspected ACS be-
fore cardiac catheterization. The model is superior to conventional
STEMI criteria and comparable with interpretation by specialized
ECG experts, blinded to all other clinical information, in detecting inva-
sively confirmed acute coronary occlusion. High accuracy was upheld
across two large, independent testing cohorts of ACS patients from
Europe and USA, with robust performance across demographic, elec-
trocardiographic, and infarct territory subgroups.

The present research is driven by the unmet need related to the sub-
optimal triage of ACS patients presenting with dynamic and often subtle
ECG changes initially. Barely, 25% of patients with ACS present with typ-
ical ST-segment elevation on their initial ECG,> and up to 35% of patients
without such ST-segment elevation have total coronary occlusion discov-
ered on delayed angiography.2*28 In addition, 20% of OMI patients meet
STEMI criteria on the initial ECG, 30% on serial ECGs, and only 49% are
recognized by cardiologists as STEMI.>**° Compared with NSTEMI with
a non-occlusive stenosis of the culprit coronary artery (NOI"II),2 patients
with OMI have far higher mortality and worse left ventricular function, in
spite of presenting at a younger age and with fewer comorbidities.*

Several previous studies deployed machine learning to triage patients
presenting with ACS, however, bearing multiple limitations.>>>"* The
majority of these studies did not validate the occlusive or flow-limiting
culprit lesions on coronary angiogram and relied on a subjective majority
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Figure 4 A real-world demonstration of an occlusion myocardial infarction artificial intelligence true-positive electrocardiogram downloaded from
Twitter. (A) The original electrocardiogram posted to Twitter by Brooks Walsh, MD (https:/twitter.com/BrooksWalsh, emergency physician at the
Bridgeport Hospital, Bridgeport, CT, USA) with the occlusion myocardial infarction artificial intelligence model interpretation (above the optimal
threshold); (B) the occlusion myocardial infarction artificial intelligence electrocardiogram model interpretation (above optimal threshold) with model
explainability; (C) the angiogram of the occluded proximal left circumflex culprit artery and high-sensitivity troponin T evolution for this case.

vote of board-certified cardiologists interpreting the ECG with STEMI as
the surrogate for OMI.233273¢ |n addition, they often employed a spec-
trum of input clinical features in addition to the ECG waveform restrict-
ing their practical, real-world implementation.'®*”~** Moreover, they
depended on the acquisition of digital 10 s ECGs from a single vendor
limiting the broader adoption.”**'™* Finally, their validation was not
scrutinized in sizeable external and international data sets.

Our study is characterized by several methodological strengths. First,
the OMI Al model is trained using deep learning methodology on an
international cohort of standardized 12-lead ECG waveforms from
multiple vendors. Second, the OMI reference standard used for model
development and evaluation was acute occlusive culprit stenosis con-
firmed angiographically. Third, the Al model interprets OMI using
only ECG waveforms as input, independent of patient demographics
or further clinical information. Using this robust methodology, the
OMI Al model achieved superior accuracy within an independent co-
hort. Likewise, the Al model demonstrated sustained high performance
(>0.92 AUC) on both EU internal testing data sets with the natural
prevalence of OMI within a cohort of ACS patients and an external val-
idation set of patients from two independent US centres. The OMI Al
model yielded a statistically superior performance to STEMI criteria and
equal performance to ECG experts when compared using six comple-
mentary performance metrics. More specifically, the model outper-
formed standard ECG millimetre criteria in detecting acute coronary
occlusion offering an over two-fold increase in sensitivity while main-
taining high specificity comparable to STEMI criteria. The presented
OMI Al model detects OMI significantly earlier (by 3 h) compared
with current guideline-recommended criteria. The performance of
the model has been retained across coronary vascular territories
displaying high specificity in complex clinical settings such as atrial
fibrillation or tachycardia. This could be attributed to the Al model’s
deep learning ability to identify new ECG patterns.

Clinical implications

This study has several implications for the future management of ACS.
The OMI Al model paired with digitization technology offers an accur-
ate detection of patients with OMI using single-standard 12-lead ECG
tracings independent of the ECG vendor or its format (Figures 4 and
5 show real-world demonstration). Specifically, such accurate and time-
ly ECG-based ACS diagnosis at the time of first patient contact could
prompt a swift coronary intervention as recommended currently in
the case of standard STEMI criteria. The rapid reperfusion in such man-
agement can consequently limit the burden of myocardial injury with
favourable impact on clinical outcomes. In this regard, the model reli-
ably detected OMI on average 3 h earlier than the current guideline-
based ECG standards suggesting its potential to streamline the timely
referral of ACS patients at risk for poor outcomes.

Limitations

Several limitations are to be considered. Although validated in multi-
centre, international cohorts of patients, our study lacks prospective
validation. In clinical practice, the decision to refer for early angiography
in patients presenting with NSTEMI, as well as to treat by revasculariza-
tion or conservatively, is based not only on ECG but often encompasses
additional clinical criteria. Nevertheless, our results show less than half
(43.9%) of OMI patients undetected by standard STEMI criteria that
could have had accelerated access to PCl based on the Al model detec-
tion truly underwent revascularization within 2 h. However, their me-
dian time to revascularization was delayed by over 9 h. There were
significant differences in clinical presentation and management between
patients in the Europe and USA due to variations in the standard of
care. Although the model has demonstrated robust performance
across various subgroups, its sensitivity was lower in patients with
left bundle branch block and broad QRS morphology. The outcome
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1. Left ventricle: The left ventricular cavity size is normal. Wall
thickness is normal. Systolic function is normal by the 3D
method. The ejection fraction is 63% (+/-5%). Wall motion is
normal; there are no regional wall motion abnormalities. No
segmental wall motion abnormalities. Overall assessment of
diastolic function is normal with normal estimate of left atrial
pressure.

2. Right ventricle: Systolic function is normal as estimated by
visual and quantitative measures.

3. No significant valve stenosis or regurgitation.

No previous study was available for comparison.

CATHETERIZATION
+ Normal coronary arteries
+ Normal left ventriculogram with preserved ejection fraction and
no regional wall motion abnormalities.
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Figure 5 A real-world demonstration of occlusion myocardial infarction artificial intelligence true-negative electrocardiogram downloaded from
Twitter. (A) The original electrocardiogram posted to Twitter by Pendell Meyers, MD (https:/twitter.com/PendellM, emergency physician at the
Carolinas Medical Centre, Charlotte, NC, USA). Both the automated diagnostic statements and the attending physician misinterpreted this electrocar-
diogram, subsequently triggering a false-positive ST-elevation myocardial infarction cathlab activation; (B) the automatically digitized electrocardiogram
with a very low occlusion myocardial infarction artificial intelligence model output (below the optimal threshold) and model explainability; (C) the echo-

cardiography, catheterization, and laboratory report for this case.

of OMl relied on a visual verification of TIMI flow on angiograms, which
may be subjective when compared with TIMI frame counting, and was
not performed in an independent core lab. Culprit lesions with TIMI 2/3
flow requiring urgent revascularization were encompassed in the pri-
mary outcome since up to one-fourth of STEMI patients have pharma-
cological or spontaneous reperfusion at the time of angiography. In this
regard, we present an Al model performance, utilizing broad ranges of
peak troponin cut-offs, which may serve as more appropriate indicators
of significant myocardial infarction resulting from these lesions. The
OMI Al model detects OMI with a binary granularity. It is understood
that the different stages of culprit coronary lesion leading to ACS, in
terms of dynamics (active or reperfused) and time (acute or subacute),
can have an influence on patient outcomes and the timing of invasive
strategies. Lastly, our study is not generalizable to a broader population
of asymptomatic patients and was not designed to quantify other rele-
vant clinical endpoints such as mortality, in-hospital complications, or
major adverse cardiovascular events (MACE). Future work should ad-
dress these limitations and observe the Al model efficacy and clinical
benefit deployed in a prospective cohort of ACS patients.

Conclusions

We have developed and validated an OMI Al model that is able to ac-
curately detect ACS patients with the angiographically confirmed
occlusion of culprit coronary arteries using only single-standard
12-lead ECGs in a large international, multi-centre cohort of ACS pa-
tients. Our Al model outperformed gold-standard STEMI criteria in
the diagnosis of OMI, but further prospective clinical studies are

needed to define the role of the OMI Al model in guiding ACS triage
and the timely referral of patients benefiting from immediate
revascularization.

Supplementary material

Supplementary material is available at European Heart Journal — Digital
Health.
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